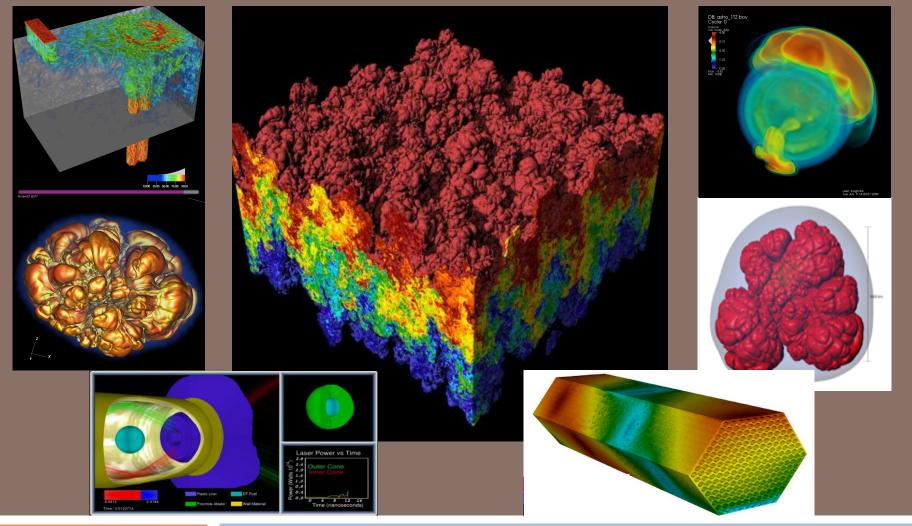
EXASCALE VISUALIZATION:

GET READY FOR A WHOLE NEW WORLD



big data versus Big Data

- (HPC) big data: large, homogeneous arrays, read from a parallel disk, and processed with symmetric resources
- Big Data: heterogeneous, unstructured data, located in a distributed setting and processed with asymmetric resources

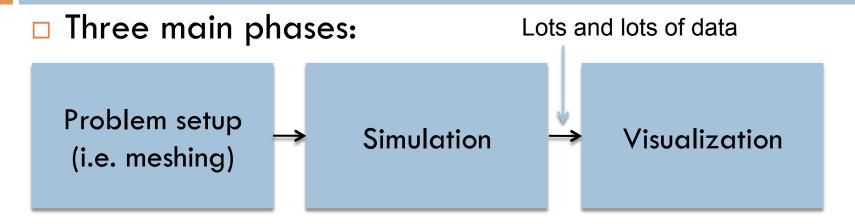
Outline

- Quick Background In
 - Scientific Visualization
 - High Performance Computing (HPC)
 - Vis+HPC
- Petascale Visualization
- Exascale Computing
- Exascale Visualization

Outline

- □ Quick Background In
 - Scientific Visualization
 - High Performance Computing (HPC)
 - □ Vis+HPC
- Petascale Visualization
- Exascale Computing
- Exascale Visualization

Visualization is a key aspect of the simulation process.



- Visualization is used primarily in three ways:
 - Scientists confirm their simulation is running correctly.
 - Scientists <u>explore</u> data, leading to new insights.
 - Scientists communicate simulation results to an audience.

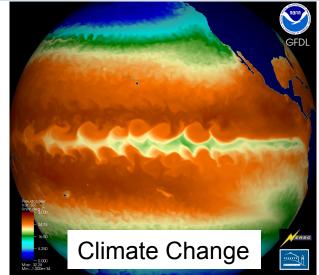
The scientific simulation community makes heavy use of supercomputers.

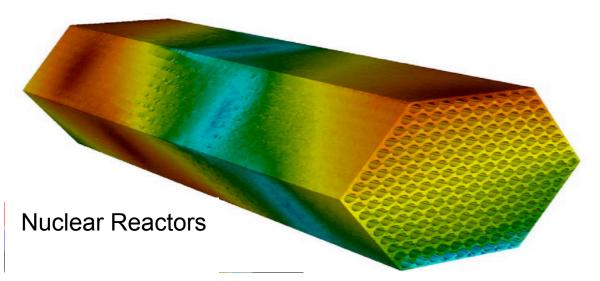
Why simulation?

Simulations are sometimes more cost effective than experiments.

Why extreme scale?

More compute cycles, more memory, etc, lead for faster and/or more accurate simulations.





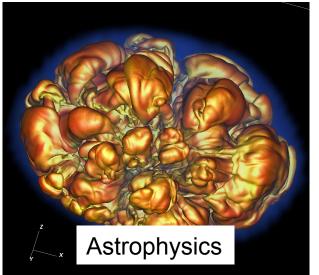


Image credit: Prabhat, LBNL

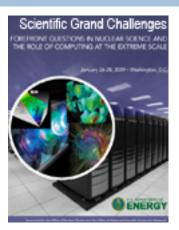
The scientific simulation community makes heavy use of supercomputers.

- How big are these machines?
 - Measured in "FLOPs" = floating point operations per second
 - 1 GigaFLOP = 1 billion FLOPs
 - 1 TeraFLOP = 1000 GigaFLOPs
 - 1 PetaFLOP = 1,000,000 GigaFLOPs
 - \rightarrow where we are today
 - 1 ExaFLOP = 1,000,000,000 GigaFLOPs
 - → potentially arriving as soon as 2018

The (DOE) Case for the Exascale

Climate

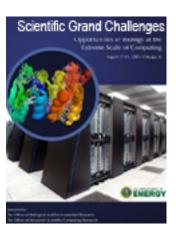
High Energy Physics



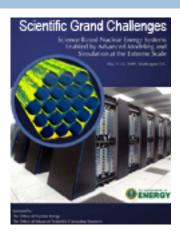
Nuclear Physics

Material Science & Chemistry

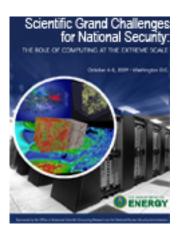
Fusion



Biology



Nuclear Reactors



National Security

International Exascale Software Project

www.exascale.org

Jack Dongarra
Pete Beckman
Terry Moore
Patrick Aerts
Giovanni Aloisio
Jean-Claude Andre
David Barkai
Jean-Yves Berthou
Taisuke Boku
Bertrand Braunschweig
Franck Cappello
Barbara Chapman
Xuebin Chi

Alok Choudhary Sudip Dosanjh Thom Dunning Sandro Fiore Al Geist Bill Gropp Robert Harrison Mark Hereld Michael Heroux Adolfy Hoisie Koh Hotta Yutaka Ishikawa Ered Johnson Sanjay Kale Richard Kenway David Keyes Bill Kramer Jesus Labarta Alain Lichnewsky Thomas Lippert Bob Lucas Barney Maccabe Satoshi Matsuoka Paul Messina Peter Michielse Bernd Mobr

Matthias Mueller
Wolfgang Nagel
Hiroshi Nakashima
Michael E. Papka
Dan Reed
Mitsuhisa Sato
Ed Seidel
John Shalf
David Skinner
Marc Snir
Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar Shinji Sumimoto William Tang John Taylor Rajeev Thakur Anne Trefethen Mateo Valero Aad van der Steen Jeffrey Vetter Peg Williams Robert Wisniewski Kathy Yelick The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420. (Publ. 6 Jan 2011)

SPONSORS

Outline

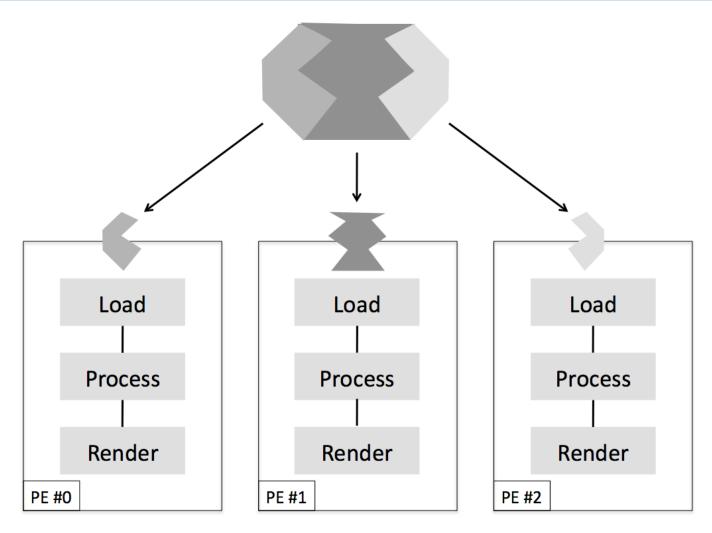
- □ Quick Background In
 - Scientific Visualization
 - High Performance Computing
 - Vis+HPC
- Petascale Visualization
- Exascale Computing
- Exascale Visualization

Defining "big data" for visualization

Big data: data that is too big to be processed in its entirety all at one time because it exceeds the available memory.

Criterion	Approaches
In its entirety	Data subsetting / multi-resolution
All at one time	Streaming (e.g. out of core)
Exceeds available memory	Parallelism

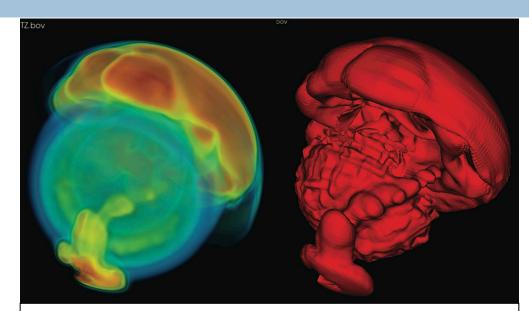
Data parallelism is the dominant paradigm for processing.



PE = Processing Element

How far can data parallelism go?

- Study: scale the data parallel approach to trillions of cells and tens of thousands of cores, varying supercomputing environment, I/O pattern, and data set.
- Finding: the approach works well for some algorithms, but I/O is a limiting factor.



Volume rendering and isosurface of 1 trillion cell astrophysics data set, using 16,000 cores of LBNL Franklin machine.

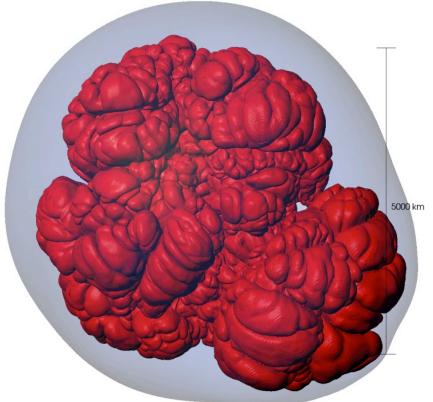
H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. Weber, and E. W. Bethel. "Extreme Scaling of Production Visualization Software on Diverse Architectures", Computer Graphics and Applications, volume 30, number 3, pp. 22-31, May/June 2010.

Outline

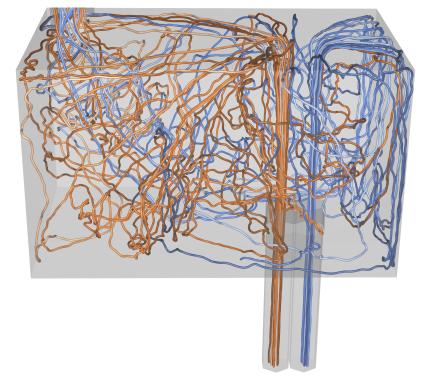
- Quick Background In
 - Scientific Visualization
 - High Performance Computing
 - □ Vis+HPC
- Petascale Visualization
- Exascale Computing
- Exascale Visualization

The two scale challenges for petascale visualization

- Scalable algorithms
- Minimize I/O



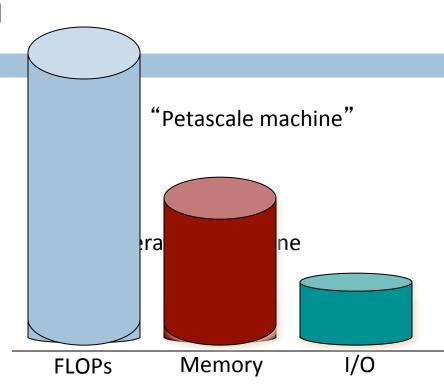




Streamlines (difficult scalability)

I/O and visualization

- Data parallelism (for visualization) is almost always >50% I/O and sometimes 98% I/O
- Amount of data to visualize is typically O(total mem)
- Two big factors:
 - 1 how much data you have to read
 - 2 how fast you can read it
- Relative I/O (ratio of total memory and I/O) is key



Trends in I/O

Machine	Year Time to write memory		
ASCI Red	1997	300 sec	
ASCI Blue Pacific	1998	400 sec	
ASCI White	2001	2001 660 sec	
ASCI Red Storm	2004	660 sec	
ASCI Purple	2005	500 sec	
Jaguar XT4	2007	1400 sec	
Roadrunner	2008	1600 sec	
Jaguar XT5	2008	1250 sec	

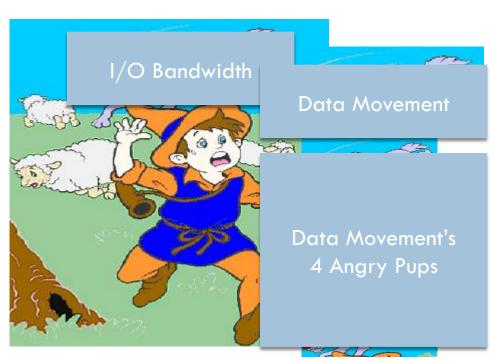
Why is relative I/O getting slower?

- I/O is quickly becoming a dominant cost in the overall supercomputer procurement.
 - And I/O doesn't pay the bills.
- Simulation codes aren't as exposed.

We need to de-emphasize I/O in our visualization and analysis techniques.

The message from this talk...

Petascale Visualization



Exascale Visualization

In situ processing is a solution for both of these problems.

In Situ Processing

- Defined: couple visualization and analysis routines
 with the simulation code (no I/O)
- □ Pros:
 - No I/O!
 - Can access all the data
 - Computational power readily available
- □ Cons:
 - Must know what you want to look for a priori
 - Increasing complexity
 - Constraints (memory, network)

Outline

- Quick Background In
 - Scientific Visualization
 - High Performance Computing
 - □ Vis+HPC
- Petascale Visualization
- □ Exascale Computing
- Exascale Visualization

Exascale: a heterogeneous, distributed memory GigaHz KiloCore MegaNode system

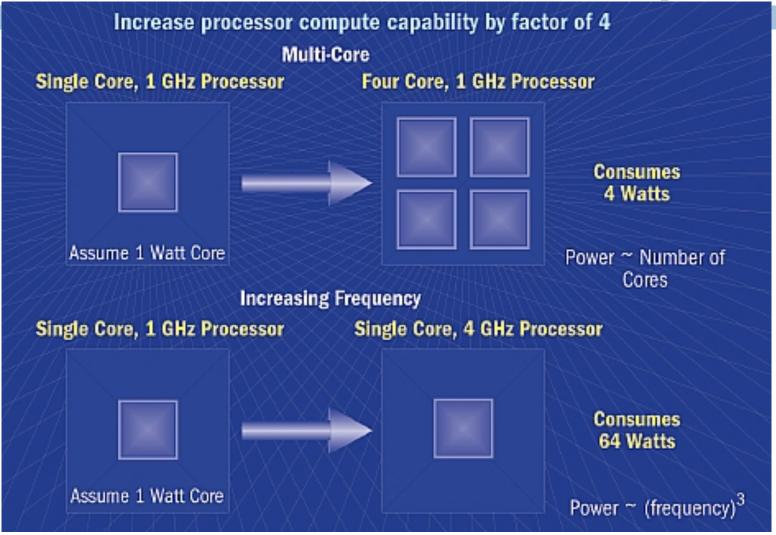
Systems	2009	2018	Difference Today & 2018
System peak	2 Pflop/s	1 Eflop/s	O(1000)
Power	6 MW	~20 MW	~3
System memory	0.3 PB	32 - 64 PB [.03 Bytes/Flop]	O(100)
Node performance	125 GF	1,2 or 15TF	O(10) - O(100)
Node memory BW	25 GB/s	2 - 4TB/s [.002 Bytes/Flop]	O(100)
Node concurrency	12	O(1k) or 10k	O(100) - O(1000)
Total Node Interconnect BW	3.5 GB/s	200-400GB/s (1:4 or 1:8 from memory BW)	O(100)
System size (nodes)	18,700	O(100,000) or O(1M)	O(10) - O(100)
Total concurrency	225,000	O(billion) [O(10) to O(100) for latency hiding]	O(10,000)
Storage	15 PB	500-1000 PB (>10x system memory is min)	O(10) - O(100)
Ю	0.2 TB	60 TB/s (how long to drain the machine)	O(100)
MTTI	days	O(1 day)	- O(10)

c/o P. Beckman, Argonne

Exascale assumptions

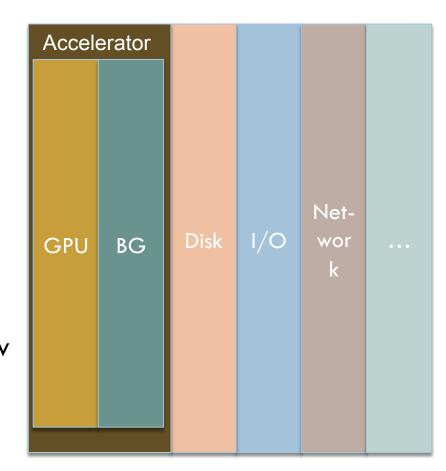
- □ The machine will be capable of one exaflop.
- □ The machine will cost < \$200M.</p>
- □ The machine will use < 20MW.</p>
- □ The machine may arrive as early as 2018.

Hurdle #1: power requires slower clocks and greater concurrency

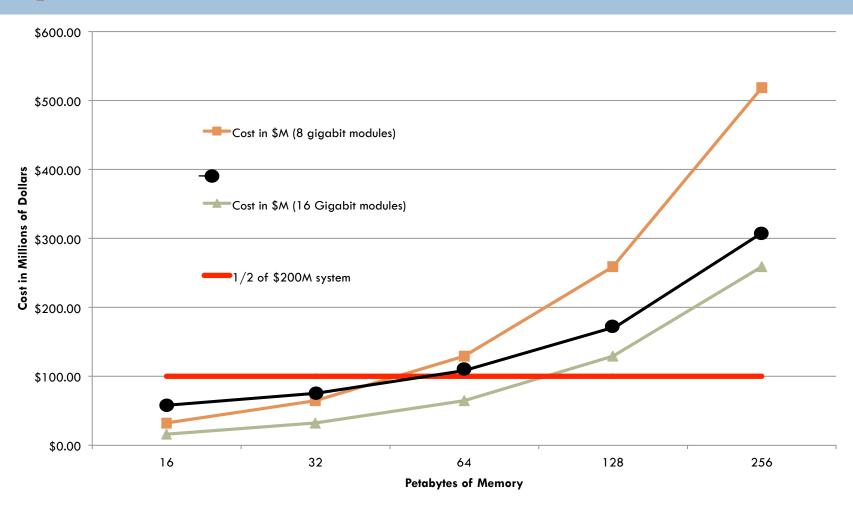


Accelerator technologies

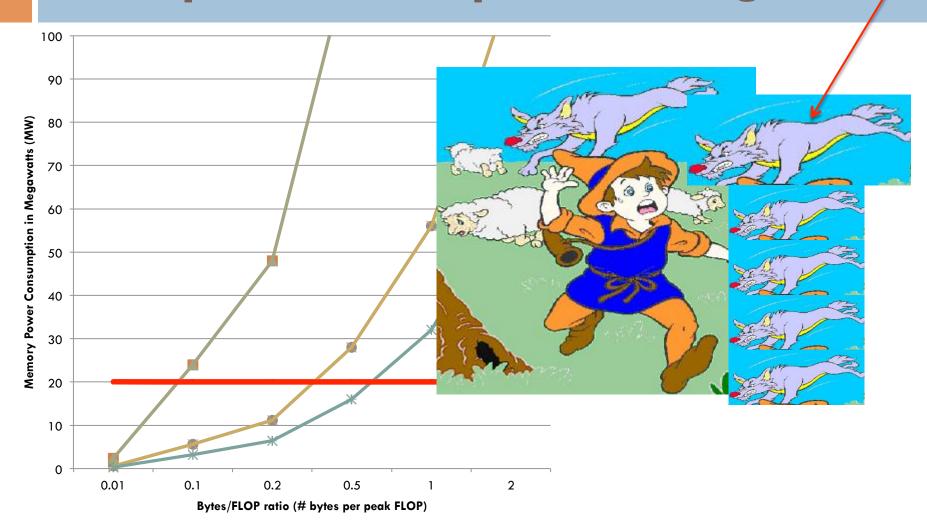
- Currently simultaneously thinking about two different accelerator technologies:
 - IBM BlueGene's successor some architectural merger of BlueGene, Power, and Cell
 - GPU / GPU evolution
- Referred to as "swim lanes": a visual element used in process flow diagrams, or flowcharts, that visually distinguishes responsibilities for sub-processes of a business process.



Hurdle #2: memory capacity eats up the entire fiscal budget



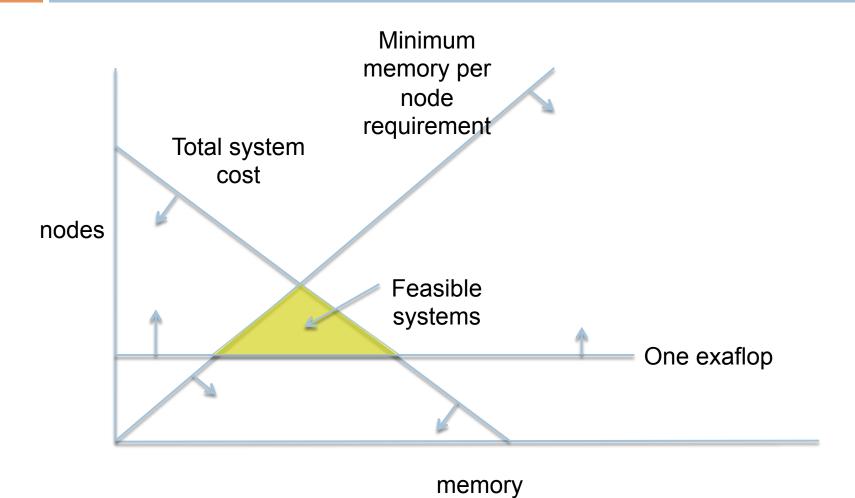
Hurdle #3: memory bandwidth eats up the entire power budget



The change in memory bandwidth to compute ratio will lead to new approaches.

- Example: linear solvers
 - They start with a rough approximation and converge through an iterative process.
 - $1.125 \rightarrow 1.1251 \rightarrow 1.125087 \rightarrow 1.12508365$
 - Each iteration requires sending some numbers to neighboring processors to account for neighborhoods split over multiple nodes.
 - Proposed exascale technique: devote some threads of the accelerator to calculating the difference from the previous iteration and just sending the difference.
 - Takes advantage of "free" compute and minimizes expensive memory movement.

The trade space for exascale is very complex.



Architectural changes will make writing fast and reading slow.

- □ Great idea: put SSDs on the node
 - Great idea for the simulations ...
 - scary world for visualization and analysis
 - We have lost our biggest ally in lobbying the HPC procurement folks
 - We are unique as data consumers
- □ \$200M is not enough...
 - The quote: "1/3 memory, 1/3 I/O, 1/3 networking ... and the flops are free"
 - Budget stretched to its limit and won't spend more on I/O.

Architectural changes will make writing fast and reading slow.

- □ Great idea: put SSDs on the node
 - Great idea for the simulations ...
 - scary world for visualization and analysis
 - We have lost our biggest ally in lobbying the HPC procurement folks
 - We are unique as data consumers
- □ \$200M is not enough...
 - The quote: "1/3 memory, 1/3 I/O, 1/3 networking ... and the flops are free"
 - Budget stretched to its limit and won't spend more on I/O.

Summary of Exascale Challenges

- The hardware architecture will be different than the petascale.
 - Not just multi-core, but many-core
- Achieving an ExaFLOP with \$200M and 20MW budgets requires complex tradeoffs.
- Data movement will be a key issue for exascale visualization.
 - End of traditional post-processing?
 - Even movement around the machine will be hard.

Outline

- Quick Background In
 - Scientific Visualization
 - High Performance Computing
 - □ Vis+HPC
- Petascale Visualization
- Exascale Computing
- □ Exascale Visualization

Summarizing exascale visualization

- Hard to get data off the machine.
 - And we can't read it in if we do get it off.
 - Hard to even move it around the machine.

- We must find ways to visualize & analyze data
 without doing so much I/O
- Multiresolution techniques: compelling
- □ In situ techniques: the focal point

4 Angry Pups

- In Situ Systems Research
- Programming Languages
- Memory Footprint
- Exploration at the Exascale

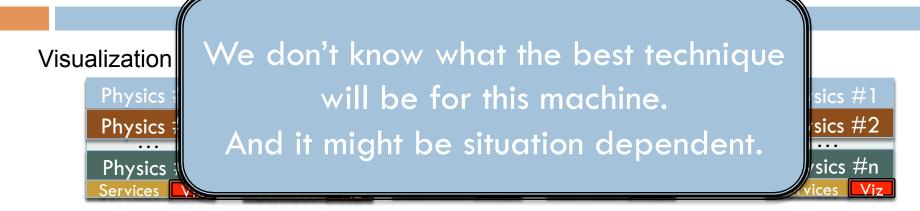
4 Angry Pups

- □ In Situ Systems Research
- Programming Languages
- Memory Footprint
- Exploration at the Exascale

Summarizing flavors of in situ

In Situ Technique	Aliases	Description	Negative Aspects
Tightly coupled	Synchronous, co-processing	Visualization and analysis have direct access to memory of simulation code	 Very memory constrained Large potential impact (performance, crashes)
Loosely coupled	Asynchronous, concurrent	Visualization and analysis run on concurrent resources and access data over network	 Data movement costs Requires separate resources
Hybrid		Data is reduced in a tightly coupled setting and sent to a concurrent resource	 Complex Shares negative aspects (to a lesser extent) of others

Possible in situ visualization scenarios



... or visualization could be done on a separate node located nearby dedicated to visualization/analysis/IO/etc. (loosely coupled)

Physics #1 Physics #2 Physics #n

Physics #1 Physics #2 Physics #n We will possibly need to run on:

- -The accelerator in a lightweight way
- -The accelerator in a heavyweight way
- -A vis cluster (?)

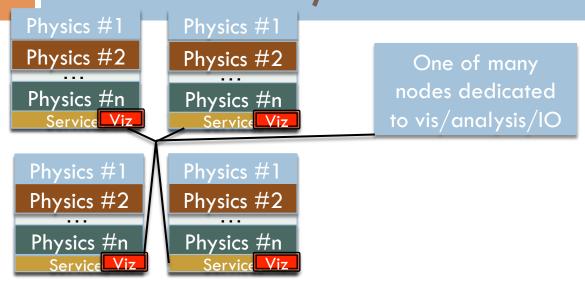
Physics #2 to hith meneralizery many more correctional disent to quasicatemachiine dedicated resources Physics #n Service Viz (enguxGPU) off machine!

vis &

urces

he data

Reducing data to results (e.g. pixels or numbers) can be hard.



- Must to reduce data every step of the way.
 - Example: contour + normals + render
 - Important that you have less data in pixels than you had in cells. (*)
 - Could contouring and sending triangles be a better alternative?
 - Easier example: synthetic diagnostics

4 Angry Pups

- □ In Situ Systems Research
- □ Programming Languages
- Memory Footprint
- Exploration at the Exascale

Angry Pup #2: Programming Language

 VTK: enables the community to develop diverse algorithms for diverse execution models for diverse data models

Impor

Subst

□ We ne

OK, what language is this in? OpenCL? DSL?

... not even clear how to start

- □ Will also be a substantial investment
- Must be:
 - Lightweight
 - Efficient
 - Able to run in a many core environment

Message-passing remains important at the exascale, but we lose its universality

MPI will be combined with other paradigms within a shared memory node (OpenMP, OpenCL, CUDA, etc.)

Codes will not be hardwareuniversal again, until a lengthy evolutionary period passes

4 Angry Pups

- In Situ Systems Research
- Programming Languages
- □ Memory Footprint
- Exploration at the Exascale

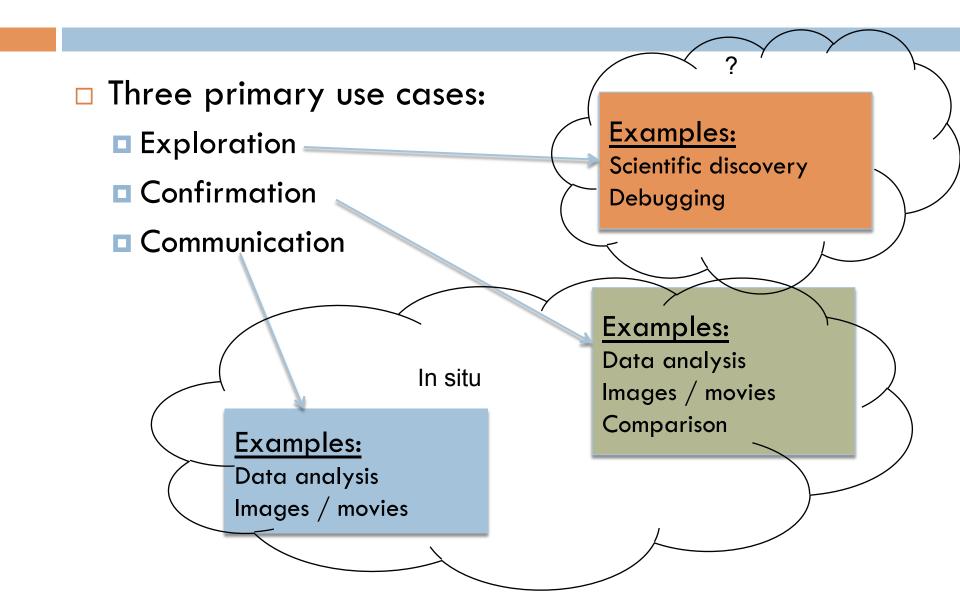
Memory efficiency

- 64 PB of memory for 1 billion cores means 64MB per core
 - (May be 10 billion cores and 6.4MB per core)
- Memory will be the 2nd most precious resource on the machine.
 - There won't be a lot left over for visualization and analysis.
- Zero copy in situ is an obvious start
 - Templates? Virtual functions?
- Ensure fixed limits for memory footprints (Streaming?)

4 Angry Pups

- In Situ Systems Research
- Programming Languages
- Memory Footprint
- Exploration at the Exascale

Do we have our use cases covered?



Enabling exploration via in situ processing

Requirement: must transform the data in a way that both reduces and enables Disk

Reduced

Exploration

via post-

lbn

routine

processing

looks at coarse

mean

Subse

Exe

It is not clear what the best way is to use in situ processing to enable exploration with post-processing ... it is only clear that we need to do it.

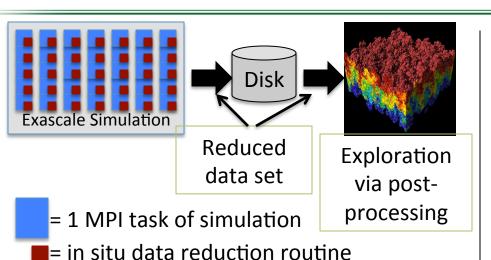
query-ariven visualization

- User applies repeated queries to better understand data
- New model: produce set of subsets in situ, explore it with postprocessing

original data.

New model: branches of the multi-res tree are pruned if they are very similar. (compression!)

CAREER: Data Exploration at the Exascale



Impact and Champions

IMPACT. We will build a catalog of techniques and their efficacy (both in performance and data integrity) that will allow exascale scientists to choose the best technique for their simulation. This catalog will inform the following questions:

- (1)How much data reduction with specific techniques? What are the power costs?
- (2)How can these techniques be carried out at billion way concurrency?
- (3)How can we create confidence in the results? How can we quantify data integrity? How can we communicate it?

Principal Investigator(s): Hank Childs, Lawrence Berkeley

Novel Ideas

- •In situ processing is viewed as a key technique for exascale computing, since it saves power by minimizing data movement. It typically assumes tasks are identified a priori.
- •Data exploration is a labor intensive process where analysts dynamically identify questions as they explore. It is frequently how new science is discovered.
- •In situ processing and data exploration are typically viewed as incongruent.
- •We are seeking in situ reductions and transformations that will enable subsequent data exploration.

Milestones/Dates/Status

This project was funded in July 2012, by the DOE Early Career program. Milestones in the early years research reduction techniques and their efficacies and in the late years develop a "cookbook" for exascale scientists.

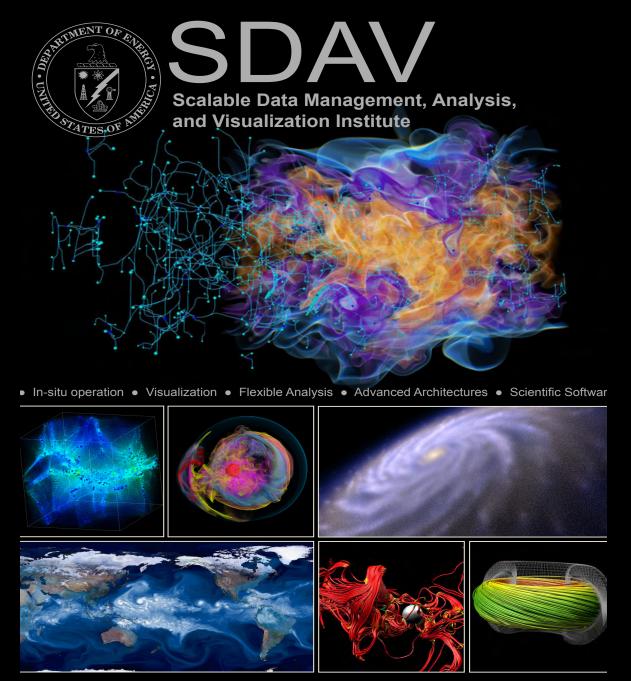
Period	Milestone
• 7/12-6/13	Develop full evaluation of single example
• 7/13-6/14	Evaluation of second example
• 7/14-6/15	New uncertainty visualization techniques
• 7/15-6/16	Cross-product study of 400 examples
• 7/16-6/17	Develop "exascale cookbook" including insights distilled from experiments

Under-represented topics in this talk.

- We will have quintillions of data points ... how do we meaningfully represent that with millions of pixels?
- Data is going to be different at the exascale: ensembles, multi-physics, etc.
 - The outputs of visualization software will be different.
- Nodes on exascale machine are likely not to have cache coherency
 - How well do our algorithms work in a GPU-type setting?
 - We have a huge investment in CPU-SW. What now?
- What do we have to do to support resiliency issue?

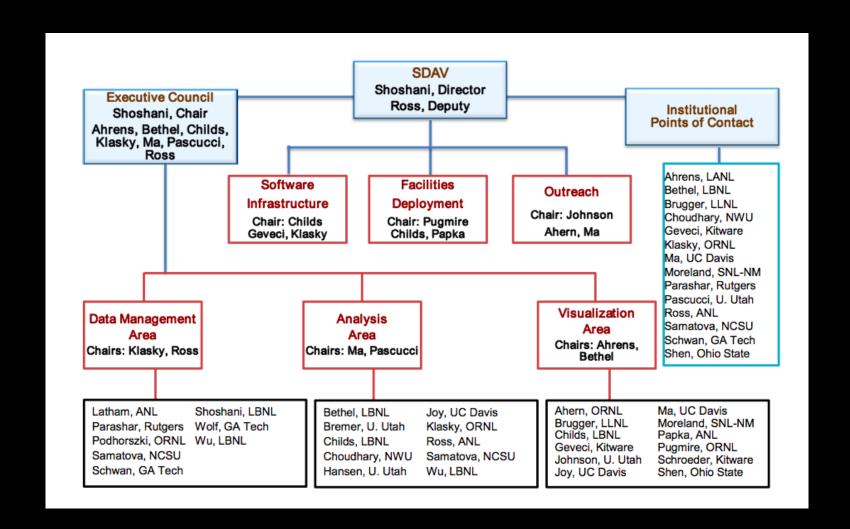
Summary: Exascale Visualization

- Visualization of large data requires techniques for scale and complexity
- Exascale computing will be power constrained and data movement looms large
 - Visualization is unique: we are doing data consumption and the machine is being built for data producers
- In addition to the I/O "wolf", we will now have to deal with a data movement "wolf", plus its 4 pups:
 - 1) In Situ System
 - 2) Programming Language
 - 3) Memory Efficiency
 - 4) In Situ-Fueled Exploration



Lead institution: Lawrence Berkeley National Laboratory Berkeley CA, 94720

SDAV Institute Management Structure



Goal

- The goal of SDAV is twofold:
 - to actively work with application teams to assist them in achieving breakthrough science;
 - to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community.

VisIt is an open source, richly featured, turn-key application for large data.

- □ For data exploration, quantitative 1 billion grid points / time slice analysis, communication, debugging, & more.
- □ >400 filters
- □ ~15 active developers
- Popular
 - R&D 100 award in 2005
 - □ Used on many of the Top500
 - □ >200K downloads
 - Funded by DOE/NNSA, DOE/NE, DOE/ASCR, NSF/XSEDE, & more

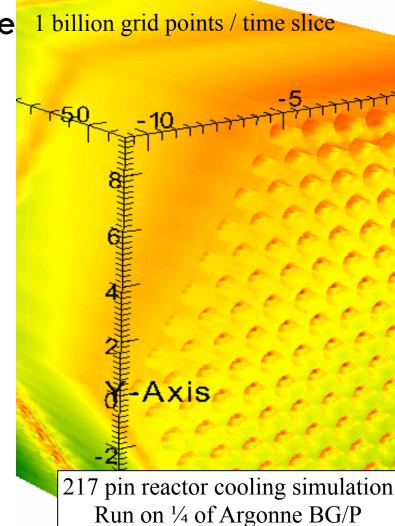
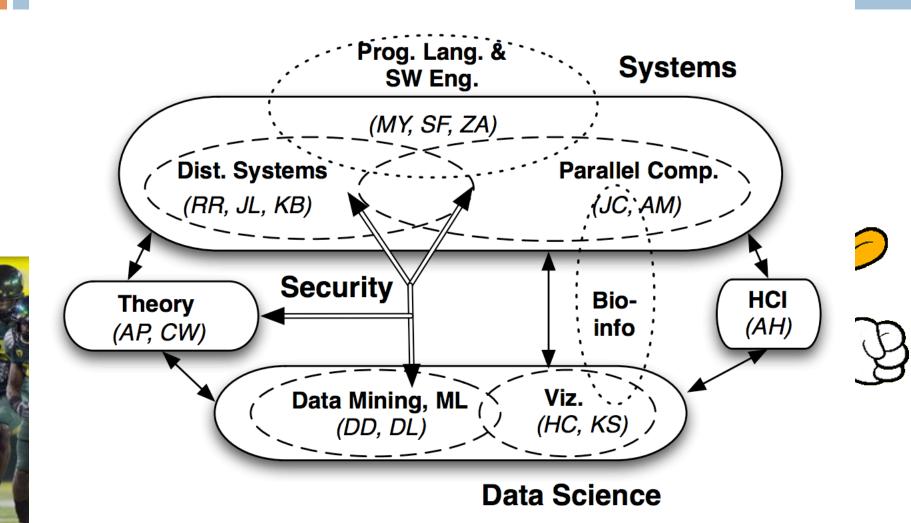


Image credit: Paul Fischer, ANL

University of Oregon CIS Department



EXASCALE VISUALIZATION:

GET READY FOR A WHOLE NEW WORLD

